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FIG. 3. Domain-wall ener gy as a function of 9. ~corresponds 
to walls shown in Fig. 2(a). at, corresponds to walls shown in 
Fig. 2(b). 

is usually sufficient. The O! x's are the direction cosines 
of the magnetization vector. That is, M K=Mp K' where 
Ms is the saturation magnetization of the ferromagnetic 
material. For cubic symmetry, this expression re
duces to 

E.x =A[(VO!l)2 + (V0!2)2 + (VO!s)2], 

where A is the exchange constant. 

(4) 

The fourth term is the crystalline anisotropy energy. 
From conventional magnetoelastic theory, it is given by 

EK =KllklO!jO! JO! kO! I' 

For cubic symmetry, it becomes 

(5) 

In this paper, interest lies in the shock-induced anisot
ropy. In shock-wave studies, strains in the large elas
tic and plastic regions are obtained. 12 For many mag
netic materials, the crystalline anisotropy energy is 
10-30 times smaller than the induced anisotropy energy 
in this strain region. For this reason the crystalline 
anisotropy will be ignored. 

The last term is the magnetoelastic energy. From con
ventional magnetoelastic theory, it is given by 

Em. = bjJklejJO! kO!" (6) 

where bjJkl is the fourth-rank magnetoelastic tensor. 
For cubic symmetry, this becomes 

Em. = b1 (O!~ell + 0!~e22 + O!;ess ) 

(7) 

The magnetoelastic energy is of primary interest in the 
shock-induced anisotropy effect. 

For a single-crystal slab of ferromagnetic material 
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with crystal axis arbitrarily oriented with respect to 
the axis of uniaxial strain, the strain tensor can be 
written 

(8) 

where nJ is a component of a unit vector directed along 
the axis of uniaxial strain. e= (Po / p) -1 is the strain 
along this axis, where Po and p are the initial and final 
densities, respectively. The magnetoelastic energy 
[Eq. (6)1 becomes 

Eme = ebjJklnjnJO!kO! I' 

This can be written 

Em. = CklO!kO! I' 

where 

(9) 

(10) 

Ckl = ebjJklnjnJ' (11) 

This manipulation is very convenient since it allows the 
familiar techniques developed for analyzing symmetric 
second-rank tensors to be used in analyzing the fourth
rank magnetoelastic tensor for a given state of uniaxial 
strain. For cubic symmetry the matrix array repre
senting the second rank tensor in Eq. (11) becomes 

(b1n~ b2n1n2 b2n1ns~ 
[C k,l = e b2n1n2 b1~ b2n2ns. 

b2n1na b2nans b1n; 

(12) 

The principal axes of the representation quadric for 
this second-rank symmetric tensor give the easy and 
hard directions of magnetization produced by the in
duced uniaxial strain. The eigenvalues are the mag
netoelastic energies when the magnetization vector lies 
along the corresponding principal axes. 17 It should be 
noted that the principal axes depend only on the direc
tion of the axis of uniaxial strain with respect to the 
crystal axes and not on the magnitude of strain since 
the eigenvectors will be functions of the nj and indepen
dent of e. Of more interest is the fact that the axis of 
uniaxial strain will not, in general, coincide with a 
principal axis and hence will not define an easy or hard 
direction of magnetization. There are special cases, 
such as uniaxial strain along a (100) or a (111) axis, in 
which the strain axis and a principal axis coincide. This 
has the following implication: First-order conventional 
magnetoelastic theory16 predicts that in any finite mag
netic field, strain-induced anisotropy cannot produce 
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FIG. 4. Surface pole distribution for magneto static potential 
problem. Ther e is pole distribution on both upper and lower 
surfaces . 
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FIG. 5. Predicted mag
netization curve. The 
magnetization M deter
mines the extent of the 
shock-induced demag
netization that would 
occur for a specimen 
initially saturated in a 
field HeO' 

total shock demagnetization except in the special cases 
stated previously. This can be seen in the following 
way: The geometry of the shock demagnetization prob
lem (Fig. 1) defines an axis of uniaxial strain with a 
perpendicular applied field. The single-crystal axes 
may be arbitrarily oriented. The direction of easy mag
netization will not, in general, coincide with the axis of 
uniaxial strain. In the limit of vanishingly small applied 
field He' the magnetization will lie along this easy axis. 
Its direction along this axis will be such that - He . M .. is 
minimal. This will give a nonzero component of M in 
the direction of He' In a poly crystalline material all 
orientations of crystallites occur . Each will contribute 
to the transverse magnetization. This may explain, at 
least in part, why shock-induced demagnetization ob
served by Shaner and RoyceS in YIG was less than ex
pected. 

ill. DOMAIN-THEORY ANALYSIS 

In the domain-theory analysis of shock-induced anisot
ropy, two single-crystal problems will be treated con
currently. These will be called the (100) problem and 
the (111) problem. The (100) problem corresponds to a 
state of uniaxial strain along a (100) axis with a perpen
dicular applied field. The (111) problem corresponds to 
a state of uniaxial strain along a (111) axis with a per
pendicular applied field. These two problems have been 
chosen for the following reasons: In single-crystal mag
netostriction, inverse of the effect considered in the 
present work, results are interpreted in terms of ~oo 
and ~lll' These magnetostriction constants represent 
total strain when a crystal is magnetized from the de
magnetized state to saturation along the (100) and (111) 
axes . The problems considered in the present work are 
the complementary analogs of these inverse magneto
striction problems. The results clearly exhibit charac
teristic behavior of the shock-induced anisotropy effect. 
Also these results will be used in determining poly
crystalline magnetic behavior. 

There is an inherent weakness in ferromagnetic domain 
theory. A basic postulate of the theory is the existence 
of domain walls. However, the theory does not provide 
a means for determining unambiguously the domain 
structure for a given problem. The procedure is to as
sume possible domain structures consistent with other 
requirements of the problem and select from these, by 
energy considerations, the most likely domain struc
ture. In Fig. 2, models for domain structures consis
tent with requirements of the present problem are 

shown. Domain walls normal to the strain axis are not 
expected. This is because the variation in the magneti
zation direction through the domain wall cannot be made 
without allowing V . M to deviate from zero. V· M * ° in 
the domain wall implies magnetic volume poles in the 
wall which would contribute excessively to the demag
netizing energy. This would be energetically unfavor
able. That V . M = ° through the domain wall is a postu
late of ferromagnetic domain theory. Also, domains of 
closure are not expected due to the very large induced 
anisotropy energy . 

A. Induced Anisotropy Energy 

The induced anisotropy energies for the (100) problem 
and the (111) problem will be obtained in this section. 
The energy will be obtained for the region within do
mains and within the walls through which the transition 
between adj acent domains is made . This will be done 
for walls of the form shown in Figs. 2 (a) and 2 (b). 

Consider first the (100) problem and the domain geom
etry in Fig. 2(a). Transform Eq. (7) to polar coordi
nates using Eq. (8), 

a 1 = sine coscJ> , a 2 = sine sincJ> , and as = cos e. (13) 

The induced anisotropy energy in a domain is easily ob
tained: 

(14) 

To obtain the induced anisotropy energy in the wall the 
variation in M through the wall must be considered. 
The requirement that V· M = 0 through the wall is equiv
alent to demanding that e be constant through the wall. 
This requires the tranSition between adjacent domains 
to proceed by a rotation of cJ> from ° to 11. The energy in 
the wall is 

E~~) (wall) = b1 e sin2 e cos2 cJ> . (15) 

In determining Eqs. (14) and (15) from the geometry in 
Fig. 2(a), it should be pointed out that within a domain 
M lies in the xz plane and, therefore, My=O or cJ>=0; 
while in the wall, V· M= ° implies aM.! az = ° and, 
therefore, My *0 which implies cJ> *0, i.e., M rotates 
out of the xz plane in keeping V . M = O. 

A slightly more difficult analysis gives for the (111) 
problem 

and 

(16) 

(17) 

This is most easily accomplished by subjecting the en
ergy expression in Eq. (7) to a coordinate transforma
tion such that the new x axis lies along the old (111) di
rection. Since the forms of the energies are the same 
for the (100) problem and the (111) problem we will 
write 

(18) 

and 

(19) 
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